Revistas / Revista Enero Diciembre 2021 / Tema de Revisión

Hallazgos radiológicos de la región abdominal en pacientes con infección por sars-cov-2

RevistaVolumen21

Ver / Descargar Artículo

Ver / Descargar Revista Completa

Compartir

Luis Alberto Hinostroza Izaguirre

Leo Tomayquispe De la cruz

K´arlo Eduardo Castro Quispe

Cesar Augusto Ramírez Cotrina

Resumen

La pandemia de COVID-19 (Coronavirus Disease 2019) ocasionada por SARS-CoV-2 (Coronavirus del Síndrome Respiratorio Agudo Severo, de tipo 2), es una enfermedad multisistémica, de relevancia no solo por los síntomas respiratorios que ocasiona, sino también por la presencia de los múltiples signos y síntomas extrapulmonares, caracterizados por distribución anatómica, frecuencia e intensidad variable.

En la génesis de COVID-19, si bien destaca el rol de los receptores ECA-2 (Enzima Convertidora de angiotensina tipo II), son importantes otros mediadores, tales como: TMPRSS-2 (SerinaProteasa Transmembrana de tipo 2) y las Catepsinas B y L. Tales componentes moleculares tienen su rol fisiopatológico en la interacción celular con SARS-CoV-2, a través de las diversas etapas del ciclo de replicación viral con expresión clínica diversa.

Actualmente la evidencia científica destaca que las diversas manifestaciones clínico-radiológicas son consecuencia del compromiso tromboinflamatorio sistémico condicionado por SARS-CoV-2, siendo tal evento la clave para la génesis fisiopatológica de COVID-19. En dicho contexto el objetivo del presente artículo de revisión consiste en destacar los múltiples hallazgos radiológicos que conciernen a las estructuras abdominales, tanto digestivas como no digestivas.

Palabras Claves

COVID-19, hallazgos radiológicos abdominales

Bibliografía

  1. Huang C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497– 506. DOI: 10.1016/S0140-6736(20)30183-5.
  2. Gupta A. et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26(7):1017-1032. DOI: 10.1038/s41591-020-0968-3.
  3. Jia HP. et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79(23):14614-14621. DOI: 10.1128/JVI.79.23.14614- 14621.2005.
  4. Dalan R. et al. The ACE-2 in COVID-19: Foe or Friend?. Horm Metab Res. 2020;52(5):257-263. DOI: 10.1055/a-1155-0501.
  5. Hamming I. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631- 637. DOI: 10.1002/path.1570.
  6. Hirano T and Murakami M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity. 2020;52(5):731-733. DOI: 10.1016/j.immuni.2020.04.003.
  7. Hoffmann M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. DOI: 10.1016/j. cell.2020.02.052.
  8. Padmanabhan P. et al. Targeting TMPRSS2 and Cathepsin B/L Together May Be Synergistic Against SARS-CoV-2 Infection. PLoS Comput Biol. 2020 Dec 8;16(12):e1008461. DOI: 10.1371/journal.pcbi.1008461
  9. Pišlar A. et al. The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. PLoS Pathog. 2020;16(11):e1009013. DOI:10.1371/ journal.ppat.1009013.
  10. Pan L. et al. Clinical Characteristics of COVID-19Patients With Digestive Symptoms in Hubei, China: A Descriptive, Cross-Sectional, Multicenter Study. Am J Gastroenterol. 2020;115(5):766-773. DOI: 10.14309/ ajg.0000000000000620.
  11. Zhang C. et al. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020;5(5):428-430. DOI: 10.1016/S2468-1253(20)30057-1.
  12. Wilson MP. et al. Potential implications of novel coronavirus disease (COVID-19) related gastrointestinal symptoms for abdominal imaging. Radiography (Lond). 2020;26(3):274. DOI: 10.1016/j.radi.2020.04.016.
  13. Dioscoridi L. Pancreas and coronavirus disease-2019. Pancreas Open J. 2020; 4(1): 1-2. DOI: 10.17140/POJ-4-111.
  14. Olson MC. et al. RadioGraphics Update: Venous Thrombosisand Hypercoagulability in the Abdomen and Pelvis-Findings in COVID-19. Radiographics. 2020;40(5):E24-E28. DOI: 10.1148/ rg.2020200119.
  15. Revzin MV. et al. Multisystem Imaging Manifestations of COVID-19, Part 2: From Cardiac Complications to Pediatric Manifestations. Radiographics. 2020;40(7):1866-1892. DOI:10.1148/rg.2020200195.
  16. Lui K. et al. Abdominal imaging findings in patients with SARSCoV-2 infection: a scoping review. Abdom Radiol (NY). 2020;1-7. DOI: 10.1007/s00261-020-02739-5.
  17. Harwood R. et al. Paediatric abdominal pain in the time ofCOVID-19: a new diagnostic dilemma. J. of Surg Case Report. 2020(9): rjaa337. DOI: 10.1093/jscr/rjaa337.Bhayana R. et al. Abdominal Imaging Findings in COVID-19: Preliminary Observations.Radiology. 2020;297(1):E207-E215. DOI: 10.1148/radiol.2020201908.Abdelmohsen MA. et al. Diagnostic value of abdominal sonography in confirmed COVID-19 intensive care patients. The Egyptian Journal of Radiology and Nuclear Medicine. 2020;51(1):198. DOI: 10.1186/s43055-020-00317-9.
  1. Parry AH. et al. Acute Mesenteric Ischemia in Severe Coronavirus-19 (COVID-19): Possible Mechanisms and Diagnostic Pathway. Acad Radiol. 2020;27(8):1190. DOI: 10.1016/j.acra.2020.05.016.
  2. Revzin MV. et al. Multisystem Imaging Manifestations of COVID-19, Part 1: Viral Pathogenesis and Pulmonary and Vascular System Complications. Radiographics. 2020;40(6):1574-1599. DOI: 10.1148/rg.2020200149.
  3. Alqahtani SA. and Schattenberg JM. Liver injury in COVID-19: The current evidence. United European Gastroenterol J. 2020;8(5):509-519. DOI: 10.1177/2050640620924157.
  4. Chai X. et al. Specific ACE2 Expression in Cholangiocytes May Cause Liver Damage After 2019 nCoV Infection. BioRxiv. 04 Feb 2020. DOI: 10.1101/2020.02.03.931766.
  5. Li H. et al Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents. 2020;55(5):105951. DOI: 10.1016/j.ijantimicag.2020.105951.
  6. Lei P. et al. Liver injury in patients with COVID-19: clinical profiles, CT findings, the correlation of the severity with liver injury. Hepatol Int. 2020;14(5):733-742. DOI: 10.1007/s12072-020-10087-1.
  7. Medeiros AK. et al. Higher frequency of hepatic steatosis at CT among COVID-19-positive patients. Abdom Radiol (NY). 2020;45(9):2748-2754. DOI: 10.1007/s00261-020-02648-7.
  8. Palomar-Lever A. et al. Hepatic steatosis as an independent risk factor for severe disease in patients with COVID-19: A computed tomography study. JGH Open. 2020 Aug 4:10.1002/ jgh3.12395. DOI: 10.1002/jgh3.12395.
  9. Low SW. et al. Gastric ischemia and portal vein thrombosis in a COVID-19-infected patient. Endoscopy. 2020 Dec;52(12):E465-E466. DOI: 10.1055/a-1230-3357.
  10. Liu F. et al. ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. Clin Gastroenterol Hepatol. 2020;18(9):2128-2130.e2. DOI: 10.1016/j.cgh.2020.04.040.
  11. Patnaik RNK. et al. Acute pancreatic injury induced by COVID-19. IDCases. 2020;22:e00959. DOI: 10.1016/j. idcr.2020.e00959.
  12. Kumaran NK. et al. Coronavirus disease-19 (COVID-19) associated with acute necrotizing pancreatitis (ANP). BMJ Case Rep. 2020;13(9):e237903. DOI: 10.1136/bcr-2020-237903.
  13. Szatmary P. et al. Emerging Phenotype of Severe Acute Respiratory Syndrome-Coronavirus 2 associated Pancreatitis. Gastroenterology. 2020;159(4):1551-1554. DOI: 10.1053/j. gastro.2020.05.069.
  14. Brikman S. et al. Acute pancreatitis in a 61-year-old man with COVID-19. CMAJ. 2020;192(30):E858-E859. DOI: 10.1503/ cmaj.201029.
  15. Wang K. et al. Acute Pancreatitis as the Initial Manifestation in 2 Cases of COVID-19 in Wuhan, China. Open Forum Infect Dis. 2020;7(9):ofaa324. DOI: 10.1093/ofid/ofaa324.
  16. Hamming I. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631- 637. DOI: 10.1002/path.1570.
  17. Guan WJ. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382:1708-20. DOI: 10.1056/NEJMoa2002032.
  18. Xia X. et al. Pathological changes of the spleen in ten patients with coronavirus disease 2019(COVID-19) by postmortem needle autopsy. Chinese Journal of Pathology. 2020,49 (00): E014 E014. DOI: 10.3760 /cma.j.cn112151-20200401-00278.
  19. Goldberg-Stein S. et al. Abdominopelvic CT findings in patients with novel coronavirus disease 2019 (COVID-19). Abdom Radiol (NY). 2020;45(9):2613-2623. DOI: 10.1007/s00261-020-02669-2.
  20. Santos Leite Pessoa M. et al. Multisystemic Infarctions in COVID-19: Focus on the Spleen. Eur J Case Rep Intern Med. 2020;7(7):001747. DOI: 10.12890/2020_001747.
  21. Richardson S. et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020; 323(20):2052–2059. DOI: 10.1001 / jama.2020.6775
  22. Ronco C. et al. Management of acute kidney injury in patients with COVID-19. Lancet Respir Med. 2020; 8(7):738–742. DOI: 10.1016/S2213-2600(20)30229-0.
  23. Petrilli CM. et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966. DOI: 10.1136/bmj.m1966.
  24. Zhou F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229):1054–1062. DOI: 10.1016/S0140-6736(20)30566-3.
  25. Cummings MJ. et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020; 395(10239):1763– 1770. DOI: 10.1101/2020.04.15.20067157.
  26. Hirsch JS. et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020; 98(1):209–218. DOI: 10.1016/j.kint.2020.05.006.
  27. Batlle D. et al. Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. J Am Soc Nephrol. 2020; 31(7):1380–1383. DOI: 10.1681/ASN.2020040419.
  28. Pan XW. et al. Identification of a potential mechanism of acute kidney injury during the COVID 19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med. 2020; 46(6):1114–1116. DOI: 10.1007 / s00134-020-06026-1.
  29. Basara Akin I. et al. Possible radiologic renal signs of COVID-19. Abdom Radiol (NY). 2020 Jul 28: 1–4. DOI: 10.1007/s00261-020-02671-8.
  30. Li MY. et al. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020; 9(1):45. DOI: 10.1186/s40249-020-00662-x.
  31. Wang S. et al. The need for urogenital tract monitoring in COVID-19. Nat Rev Urol. 2020; 17(6):314–315. DOI: 10.1038/s41585-020-0319-7.
  32. Xu X. et al. Pathological changes of the spleen in ten patients with coronavirus disease 2019 (COVID-19) by postmortem needle autopsy [in Chinese]. Zhonghua Bing Li Xue Za Zhi. 2020; 49(6):576–582. DOI: 10.3760/ cma.j.cn112151-20200401-00278.
  33. Chen Y. et al. The Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Directly Decimates Human Spleens and Lymph Nodes. medRxiv. March 31, 2020. DOI: 10.1101/2020.03.27.20045427.
  34. Revzin MV. et al. Multisystem Imaging Manifestations of COVID-19, Part 1: Viral Pathogenesis and Pulmonary and Vascular System Complications. RadioGraphics. 2020 Oct;40(6):1574-1599. DOI: 10.1148/rg.2020200149.
  35. Parry AH. et al. Acute Mesenteric Ischemia in Severe Coronavirus-19 (COVID-19): Possible Mechanisms and Diagnostic Pathway. Acad Radiol. 2020; 27(8):1190. DOI: 10.1016/j.acra.2020.05.016.
  36. Levine MS. et al. Diagnosis of pneumoperitoneum on supine abdominal radiographs. AJR Am J Roentgenol. 1991; 156(4):731–735. DOI: 10.2214 / ajr.156.4.2003436.
  37. Bhayana R. et al. Abdominal Imaging Findings in COVID-19: Preliminary Observations. Radiology. 2020; 297(1):E207–E215. DOI: 10.1148/radiol.2020201908.
  38. Hameed S. et al. Spectrum of Imaging Findings on Chest Radiographs, US, CT, and MRI Images in Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with COVID-19. Radiology. 2020 Jun 25;202543. DOI: 10.1148/radiol.2020202543.
  39. Revzin MV. et al. Multisystem Imaging Manifestations of COVID-19, Part 2: From Cardiac Complications to Pediatric Manifestations. RadioGraphics. 2020 40: 7, 1866-1892. DOI: 10.1148/rg.2020200195.
  40. Bridwell R.E. et al. A coronavirus disease 2019 (COVID-19) patient with bilateral orchitis: A case report. American Journal of Emergency Medicine. 2020 Aug 27. DOI: 10.1016/j.ajem.2020.08.068.